One dimensional Fokker-Planck reduced dynamics of decision making models in Computational Neuroscience

نویسندگان

  • José Antonio Carrillo
  • Stéphane Cordier
  • Simona Mancini
  • José A. Carrillo
چکیده

We study a Fokker-Planck equation modelling the firing rates of two interacting populations of neurons. This model arises in computational neuroscience when considering, for example, bistable visual perception problems and is based on a stochastic Wilson-Cowan system of differential equations. In a previous work, the slow-fast behavior of the solution of the Fokker-Planck equation has been highlighted. Our aim is to demonstrate that the complexity of the model can be drastically reduced using this slow-fast structure. In fact, we can derive a one-dimensional Fokker-Planck equation that describes the evolution of the solution along the so-called slow manifold. This permits to have a direct efficient determination of the equilibrium state and its effective potential, and thus to investigate its dependencies with respect to various parameters of the model. It also allows to obtain information about the time escaping behavior. The results obtained for the reduced 1D equation are validated with those of the original 2D equation both for equilibrium and transient behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A decision-making Fokker-Planck model in computational neuroscience.

In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the fi...

متن کامل

Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation

The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimens...

متن کامل

Dimensional Reduction of the Fokker-Planck Equation for Stochastic Chemical Reactions

The Fokker-Planck equation models chemical reactions on a mesoscale. The solution is a probability density function for the copy number of the different molecules. The number of dimensions of the problem can be large making numerical simulation of the reactions computationally intractable. The number of dimensions is reduced here by deriving partial differential equations for the first moments ...

متن کامل

Numerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks

Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...

متن کامل

Computational Nonlinear Stochastic Control based on the Fokker-Planck-Kolmogorov Equation

The optimal control of nonlinear stochastic systems is considered in this paper. The central role played by the Fokker-Planck-Kolmogorov equation in the stochastic control problem is shown under the assumption of asymptotic stability. A computational approach for the problem is devised based on policy iteration/ successive approximations, and a finite dimensional approximation of the control pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017